Cramér Type Moderate Deviations for Studentized U-statistics

نویسندگان

  • Tze Leng Lai
  • Qi-Man Shao
  • Qiying Wang
چکیده

The U-statistic elegantly and usefully generalizes the notion of a sample mean. Typical examples include (i) sample mean: h(x1, x2) = 12 (x1 + x2); (ii) sample variance: h(x1, x2) = 12 (x1 − x2); (iii) Gini’s mean difference: h(x1, x2) = |x1 − x2|; (iv) one-sample Wilcoxon’s statistic: h(x1, x2) = 1(x1 + x2 ≤ 0). The non-degenerate U-statistic shares many limiting properties with the sample mean. For example, if Eh(X1, X2) < ∞ and σ 1 = Var(g(X1)) > 0, where

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramér Type Moderate Deviation Theorems for Self-Normalized Processes

Cramér type moderate deviation theorems quantify the accuracy of the relative error of the normal approximation and provide theoretical justifications for many commonly used methods in statistics. In this paper, we develop a new randomized concentration inequality and establish a Cramér type moderate deviation theorem for general self-normalized processes which include many well-known Studentiz...

متن کامل

Cramér Type Moderate Deviation for the Maximum of the Periodogram with Application to Simultaneous Tests in Gene Expression Time Series

In this paper, Cramér type moderate deviations for the maximum of the periodogram and its studentized version are derived. The results are then applied to a simultaneous testing problem in gene expression time series. It is shown that the level of the simultaneous tests is accurate provided that the number of genes G and the sample size n satisfy G = exp(o(n)).

متن کامل

Moderate Deviations for Functional U-processes

The moderate deviations principle is shown for the partial sums processes built on U-empirical measures of Polish space valued random variables and on U-statistics of real valued kernel functions. It is proved that in the non-degenerate case the conditions for the time xed principles suuce for the moderate deviations principle to carry over to the corresponding partial sums processes. Given a u...

متن کامل

Cramér Type Moderate deviations for the Maximum of Self-normalized Sums

Let {X ,X i , i ≥ 1} be i.i.d. random variables, Sk be the partial sum and V 2 n = ∑n i=1 X 2 i . Assume that E(X ) = 0 and E(X )<∞. In this paper we discuss the moderate deviations of the maximum of the self-normalized sums. In particular, we prove that P(max1≤k≤n Sk ≥ x Vn)/(1−Φ(x))→ 2 uniformly in x ∈ [0, o(n)).

متن کامل

Self-normalized Cramér type Moderate Deviations for the Maximum of Sums

Let X1, X2, . . . be independent random variables with zero means and finite variances, and let Sn = ∑n i=1Xi and V 2 n = ∑n i=1X 2 i . A Cramér type moderate deviation for the maximum of the self-normalized sums max1≤k≤n Sk/Vn is obtained. In particular, for identically distributed X1, X2, · · · , it is proved that P(max1≤k≤n Sk ≥ xVn)/(1 − Φ(x)) → 2 uniformly for 0 < x ≤ o(n1/6) under the opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011